Preferred Name | hyperbolicity | |
Synonyms |
|
|
Definitions |
A fixed point [http://identifiers.org/teddy/TEDDY_0000086] is said to be hyperbolic if all eigenvalues of the Jacobian matrix have non-zero real parts. A limit cycle [http://identifiers.org/teddy/TEDDY_0000051] is called hyperbolic if the fixed point of the Poincare ́map is hyperbolic. |
|
ID |
http://identifiers.org/teddy/TEDDY_0000157 |
|
definition |
A fixed point [http://identifiers.org/teddy/TEDDY_0000086] is said to be hyperbolic if all eigenvalues of the Jacobian matrix have non-zero real parts. A limit cycle [http://identifiers.org/teddy/TEDDY_0000051] is called hyperbolic if the fixed point of the Poincare ́map is hyperbolic. |
|
label |
hyperbolicity |
|
prefixIRI |
TEDDY_0000157 |
|
prefLabel |
hyperbolicity |
|
seeAlso | ||
disjointWith |
http://identifiers.org/teddy/TEDDY_0000164 http://identifiers.org/teddy/TEDDY_0000162 http://identifiers.org/teddy/TEDDY_0000167 http://identifiers.org/teddy/TEDDY_obsolete http://identifiers.org/teddy/TEDDY_0000165 http://identifiers.org/teddy/TEDDY_0000163 http://identifiers.org/teddy/TEDDY_0000179 http://identifiers.org/teddy/TEDDY_0000175 |
|
subClassOf |