Preferred Name

hyperbolicity
Synonyms
Definitions

A fixed point [http://identifiers.org/teddy/TEDDY_0000086] is said to be hyperbolic if all eigenvalues of the Jacobian matrix have non-zero real parts. A limit cycle [http://identifiers.org/teddy/TEDDY_0000051] is called hyperbolic if the fixed point of the Poincare ́map is hyperbolic.

ID

http://identifiers.org/teddy/TEDDY_0000157

definition

A fixed point [http://identifiers.org/teddy/TEDDY_0000086] is said to be hyperbolic if all eigenvalues of the Jacobian matrix have non-zero real parts. A limit cycle [http://identifiers.org/teddy/TEDDY_0000051] is called hyperbolic if the fixed point of the Poincare ́map is hyperbolic.

label

hyperbolicity

prefixIRI

TEDDY_0000157

prefLabel

hyperbolicity

seeAlso

http://identifiers.org/isbn/0387983821

http://identifiers.org/isbn/0198565623

disjointWith

http://identifiers.org/teddy/TEDDY_0000164

http://identifiers.org/teddy/TEDDY_0000162

http://identifiers.org/teddy/TEDDY_0000167

http://identifiers.org/teddy/TEDDY_obsolete

http://identifiers.org/teddy/TEDDY_0000165

http://identifiers.org/teddy/TEDDY_0000163

http://identifiers.org/teddy/TEDDY_0000179

http://identifiers.org/teddy/TEDDY_0000175

http://identifiers.org/teddy/TEDDY_0000177

http://identifiers.org/teddy/TEDDY_0000166

subClassOf

http://identifiers.org/teddy/TEDDY_0000148

Delete Subject Author Type Created
No notes to display
Create mapping

Delete Mapping To Ontology Source
There are currently no mappings for this class.