Human Interaction Network Ontology

Last uploaded: June 27, 2014
Preferred Name

Procollagen lysyl hydrolases convert lysine to 5-hydroxylysine
Synonyms
Definitions

Authored: Jupe, S, 2010-07-20 Edited: Jupe, S, 2012-05-14 Reviewed: Canty-Laird, EG, 2012-05-24 Lysyl hydroxylase (LH) (E.C. 1.14.11.4) is a dimeric enzyme that catalyzes the formation of (2S,5R)-5-hydroxylysyl residues (5-Hyl) in proteins (reviewed in Myllyharju & Kivirikko 2001) within a peptide linkage at the Y position of the repeating X-Y-Gly sequence motif. The extent of 5-Hyl formation is much more variable than that of hydroxyproline. It varies between collagen types, tissues and by physiological state (Miller 1984). 5-Hyl content also differs between the helical and telopeptide domains. This and the observation that purified lysyl hydroxylase failed to hydroxylate Lys in the telopeptide domains has led to speculation that there are separate enzymes responsible for Lys hydroxylation in the helical and telopeptide domains (Royce & Barnes 1985, Gerriets et al. 1993). The LH2b isoform may be the telopeptide-specific form (Pornprasertsuk et al. 2004).<br>In human type I collagen, there are 38 residues of Lys in each alpha-1 chain (36 in the helical domain, 1 each in the C- and N-telopeptide domains) and 31 in each alpha-2 chain (30 in the helical domain,1 in the N-telopeptide and none in the C-telopeptide domains) (Yamauchi & Shiiba 2002). <br><br>LH requires ferrous iron, oxygen, 2-oxoglutarate, and ascorbate. The hydroxylation reaction occurs during collagen biosynthesis in the ER as a co- and post-translational event, before triple helix formation. Three LH isoforms have been characterized in humans, encoded by the genes PLOD1-3. The isoforms appear to have preferences for certain collagen types, e.g. LH3 preferentially binds collagen types IV, VI, XI and XII (Myllyla et al. 2007). LH3 has galactosyltransferase and glucosyltransferase activities in addition to its lysyl hydroxylase activity (Heikkinen et al. 2000, Wang et al. 2002), a multifunctionality also seen in the single C. elegans orthologue (Wang et al. 2002a, b). Hydroxylysine residues can form stable intermolecular cross-links between collagen molecules in fibrils and also represent sites for glucosyl- and galactosyl- carbohydrate attachment. <br><br>In this reaction all collagen subtypes are represented as having a single hydroxylysine.

ID

http://purl.obolibrary.org/obo/HINO_0022363

comment

Authored: Jupe, S, 2010-07-20

Edited: Jupe, S, 2012-05-14

Reviewed: Canty-Laird, EG, 2012-05-24

Lysyl hydroxylase (LH) (E.C. 1.14.11.4) is a dimeric enzyme that catalyzes the formation of (2S,5R)-5-hydroxylysyl residues (5-Hyl) in proteins (reviewed in Myllyharju & Kivirikko 2001) within a peptide linkage at the Y position of the repeating X-Y-Gly sequence motif. The extent of 5-Hyl formation is much more variable than that of hydroxyproline. It varies between collagen types, tissues and by physiological state (Miller 1984). 5-Hyl content also differs between the helical and telopeptide domains. This and the observation that purified lysyl hydroxylase failed to hydroxylate Lys in the telopeptide domains has led to speculation that there are separate enzymes responsible for Lys hydroxylation in the helical and telopeptide domains (Royce & Barnes 1985, Gerriets et al. 1993). The LH2b isoform may be the telopeptide-specific form (Pornprasertsuk et al. 2004).<br>In human type I collagen, there are 38 residues of Lys in each alpha-1 chain (36 in the helical domain, 1 each in the C- and N-telopeptide domains) and 31 in each alpha-2 chain (30 in the helical domain,1 in the N-telopeptide and none in the C-telopeptide domains) (Yamauchi & Shiiba 2002). <br><br>LH requires ferrous iron, oxygen, 2-oxoglutarate, and ascorbate. The hydroxylation reaction occurs during collagen biosynthesis in the ER as a co- and post-translational event, before triple helix formation. Three LH isoforms have been characterized in humans, encoded by the genes PLOD1-3. The isoforms appear to have preferences for certain collagen types, e.g. LH3 preferentially binds collagen types IV, VI, XI and XII (Myllyla et al. 2007). LH3 has galactosyltransferase and glucosyltransferase activities in addition to its lysyl hydroxylase activity (Heikkinen et al. 2000, Wang et al. 2002), a multifunctionality also seen in the single C. elegans orthologue (Wang et al. 2002a, b). Hydroxylysine residues can form stable intermolecular cross-links between collagen molecules in fibrils and also represent sites for glucosyl- and galactosyl- carbohydrate attachment. <br><br>In this reaction all collagen subtypes are represented as having a single hydroxylysine.

definition source

Pubmed11310942

Pubmed3931636

Pubmed15231023

Pubmed6809411

Pubmed17516569

Pubmed9582318

ISBN978-0444007995

Pubmed10934207

Pubmed12029842

Reactome, http://www.reactome.org

Pubmed11896059

Pubmed9054364

Pubmed8244992

Pubmed12475640

Pubmed1577494

has input

http://purl.obolibrary.org/obo/HINO_0019650

http://purl.obolibrary.org/obo/CHEBI_15379

http://purl.obolibrary.org/obo/CHEBI_30915

has output

http://purl.obolibrary.org/obo/HINO_0019651

http://purl.obolibrary.org/obo/CHEBI_16526

http://purl.obolibrary.org/obo/CHEBI_15741

label

Procollagen lysyl hydrolases convert lysine to 5-hydroxylysine

prefixIRI

HINO:0022363

prefLabel

Procollagen lysyl hydrolases convert lysine to 5-hydroxylysine

seeAlso

ReactomeREACT_120884

EC Number: 1.14.11.4

Reactome Database ID Release 431981104

subClassOf

http://purl.obolibrary.org/obo/INO_0000040

Delete Subject Author Type Created
No notes to display
Create mapping

Mapping To Ontology Source
There are currently no mappings for this class.