Human Interaction Network Ontology

Last uploaded: June 27, 2014
Preferred Name

Amyloids

Synonyms
Definitions

Amyloid is a term used to describe typically extracellular deposits of aggregated proteins, sometimes known as plaques. Abnormal accumulation of amyloid is amyloidosis, a term associated with diseased organs and tissues, particularly neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntingdon's. Amyloid deposits consist predominantly of amyloid fibrils, rigid, non-branching structures that form ordered assemblies, characteristically with a cross beta-sheet structure where the sheets run parallel to the direction of the fibril (Sawaya et al. 2007). Often the fibril has a left-handed twist (Nelson & Eisenberg 2006). At least 27 human proteins form amyloid fibrils (Sipe et al. 2010). Many of these proteins have non-pathological functions; the trigger that leads to abnormal aggregations differs between proteins and is not well understood but in many cases the peptides are abnormal fragments or mutant forms arising from polymorphisms, suggesting that the initial event may be aggregation of misfolded or unfolded peptides. Early studies of Amyloid-Beta assembly led to a widely accepted model that assembly was a nucleation-dependent polymerization reaction (Teplow 1998) but it is now understood to be more complex, with multiple 'off-pathway' events leading to a variety of oligomeric structures in addition to fibrils (Roychaudhuri et al. 2008). An increasing body of evidence suggests that these oligomeric forms are primarily responsible for the neurotoxic effects of Amyloid-beta (Roychaudhuri et al. 2008), alpha-synuclein (Winner et al. 2011) and tau (Dance & Strobel 2009, Meraz-Rios et al. 2010). Amyloid oligomers are believed to have a common structural motif that is independent of the protein involved and not present in fibrils (Kayed et al. 2003). Conformation dependent, aggregation specific antibodies suggest that there are 3 general classes of amyloid oligomer structures (Glabe 2009) including annular structures which may be responsible for the widely reported membrane permeabilization effect of amyloid oligomers. Toxicity of amyloid oligomers preceeds the appearance of plaques in mouse models (Ferretti et al. 2011). Fibrils are often associated with other molecules, notably heparan sulfate proteoglycans and Serum Amyloid P-component, which are universally associated and seem to stabilize fibrils, possibly by protecting them from degradation. Authored: Jupe, S, 2010-10-15 Reviewed: Perry, G, 2011-04-08 Edited: Jupe, S, 2011-04-08

ID

http://purl.obolibrary.org/obo/HINO_0016076

comment

Amyloid is a term used to describe typically extracellular deposits of aggregated proteins, sometimes known as plaques. Abnormal accumulation of amyloid is amyloidosis, a term associated with diseased organs and tissues, particularly neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntingdon's. Amyloid deposits consist predominantly of amyloid fibrils, rigid, non-branching structures that form ordered assemblies, characteristically with a cross beta-sheet structure where the sheets run parallel to the direction of the fibril (Sawaya et al. 2007). Often the fibril has a left-handed twist (Nelson & Eisenberg 2006). At least 27 human proteins form amyloid fibrils (Sipe et al. 2010). Many of these proteins have non-pathological functions; the trigger that leads to abnormal aggregations differs between proteins and is not well understood but in many cases the peptides are abnormal fragments or mutant forms arising from polymorphisms, suggesting that the initial event may be aggregation of misfolded or unfolded peptides. Early studies of Amyloid-Beta assembly led to a widely accepted model that assembly was a nucleation-dependent polymerization reaction (Teplow 1998) but it is now understood to be more complex, with multiple 'off-pathway' events leading to a variety of oligomeric structures in addition to fibrils (Roychaudhuri et al. 2008). An increasing body of evidence suggests that these oligomeric forms are primarily responsible for the neurotoxic effects of Amyloid-beta (Roychaudhuri et al. 2008), alpha-synuclein (Winner et al. 2011) and tau (Dance & Strobel 2009, Meraz-Rios et al. 2010). Amyloid oligomers are believed to have a common structural motif that is independent of the protein involved and not present in fibrils (Kayed et al. 2003). Conformation dependent, aggregation specific antibodies suggest that there are 3 general classes of amyloid oligomer structures (Glabe 2009) including annular structures which may be responsible for the widely reported membrane permeabilization effect of amyloid oligomers. Toxicity of amyloid oligomers preceeds the appearance of plaques in mouse models (Ferretti et al. 2011). Fibrils are often associated with other molecules, notably heparan sulfate proteoglycans and Serum Amyloid P-component, which are universally associated and seem to stabilize fibrils, possibly by protecting them from degradation.

Authored: Jupe, S, 2010-10-15

Reviewed: Perry, G, 2011-04-08

Edited: Jupe, S, 2011-04-08

definition source

Pubmed17190616

Pubmed17468747

Pubmed21039326

Reactome, http://www.reactome.org

Pubmed21143159

Pubmed19943854

Pubmed9686307

Pubmed18845536

Pubmed16302959

Pubmed21325059

Pubmed12702875

label

Amyloids

located_in

http://purl.obolibrary.org/obo/NCBITaxon_9606

prefixIRI

HINO:0016076

prefLabel

Amyloids

seeAlso

ReactomeREACT_75925

Reactome Database ID Release 43977225

subClassOf

http://purl.obolibrary.org/obo/INO_0000021

has_part

http://purl.obolibrary.org/obo/HINO_0009690

http://purl.obolibrary.org/obo/HINO_0009688

http://purl.obolibrary.org/obo/HINO_0009706

http://purl.obolibrary.org/obo/HINO_0009705

http://purl.obolibrary.org/obo/HINO_0009709

Delete Subject Author Type Created
No notes to display
Create mapping

Delete Mapping To Ontology Source
There are currently no mappings for this class.